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Abstract
In this study, we report calculations of the collective plasmon excitations for
an electron gas confined to the surface of a cylindrical nanotube in a magnetic
field which is perpendicular to the axis of the cylinder. The eigenenergies of
the single-particle states are first calculated. In a weak magnetic field, only a
few of the lowest eigenstates show a coupling between the linear momentum
along the axis of the nanotube and the angular momentum around its axis.
Numerical results demonstrating this effect for various magnetic field strengths
are presented. We then employ the random phase approximation (RPA) to
obtain the density fluctuations due to a weak external perturbation by using the
single-particle eigenstates to calculate the polarization function in the dispersion
equation. Numerical results for the magnetoplasmon dispersion are presented
for various magnetic field strengths.

In recent years, there has been a considerable amount of interest from both an experimental
and theoretical point of view in the electronic transport and optical properties of carbon
nanotubes [1, 2]. Of particular importance have been the plasmon excitations which have
been studied for single-walled and multi-walled nanotubes, a linear array of nanotubes and
the effects which an external magnetic field has on the plasmon excitations [3–18]. As far as
we know, the applied magnetic field was along the axis of the nanotube [14, 15] and several
interesting new effects were demonstrated including many cusps in the plasmon spectrum as a
function of the magnetic flux through the tubule. The flux-dependent plasmon frequency has
been shown to be proportional to the induced persistent-current density in the tubule [14, 15].

Our motivation for carrying out the present calculations is due to the fact that we may
get a clearer understanding of the transport properties of systems of reduced dimensionality
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by studying the plasmon excitation spectrum [19]. This is so because quasiparticles
(magnetoplasmons here) determine the resistivity, as can be seen from the Kubo formula [20].
The role played by external fields in modifying the plasmon excitations of low-dimensional
structures has been of particular interest [4, 5]. Several authors have investigated the response
of nanotubes of various radii, which is relevant in considerations of the crossover from one
dimensionality to another [6, 7, 9].

In this letter, we consider plasmon excitations in single-walled nanotubes using the RPA.
We use a simple model to describe the electronic properties of the nanotubes. In our model, we
assume that the electron system in a single cylindrical tubule consists of quasi-free electrons
confined to the surface of an infinitely long cylinder of radius R. The tubule is embedded in a
medium with dielectric constant εb. Based on this model, Lin and Shung [13] calculated the
plasmon spectrum in a single cylindrical tubule and in a system of several co-axial cylindrical
tubules. Gumbs and Aı̌zin [10] recently obtained the plasmon excitations for a linear array of
nanotubes consisting of an arbitrary number of tubules in the absence of an external magnetic
field. We first calculate the single-particle energy eigenstates for these electrons in the presence
of a magnetic field applied in a direction perpendicular to the axis of the nanotube. The
energy eigenvalues are analysed as functions of magnetic field and momentum along its axis
by solving numerically the Schrödinger equation in a magnetic potential. We introduce the
Coulomb interaction between electrons and determine the charge density fluctuations due to
a weak external field. We use RPA to obtain the magnetoplasmon dispersion equation and
numerical results are presented. Specifically, we develop a general formulation which can
be used to derive the dispersion equation for magnetoplasmons for an arbitrary number of
concentric tubules when a magnetic field is applied perpendicular to the axis of the nanotube.
What makes this different from the case of a parallel magnetic field is that the magnetic field
couples the linear motion along the axis of the nanotube with the orbital motion around the axis,
i.e., the eigenstates cannot be labelled by the angular momentum quantum number because of
mode coupling. This leads to some features in the plasmon excitation spectrum which become
more pronounced with increasing magnetic field.

Consider an electron with effective mass m∗ confined on the surface of a circular cylinder
of radius R, in the presence of a uniform magnetic field B (parallel to the y axis) perpendicular
to its axis, taken to be the z direction. We use the gauge Ax = 0, Ay = 0, Az = −B R cosϕ,
where ϕ is the angle the radius vector makes with the positive x axis. It is a simple matter to
show that the eigenfunctions are

ψα(r, ϕ, z) = 1√
Lz

eikz z�(r)�l(ϕ), �2(r) = δ(r − R), (1)

where �l is a solution of the Schrödinger equation

− h̄2

2m∗ R2

d2�(ϕ)

dϕ2
+ Veff(ϕ)�(ϕ) = ε̃�(ϕ) (2)

in the presence of the magnetic potential given by

Veff(ϕ) ≡ eh̄kz B R

m∗ cosϕ +
e2 B2 R2

2m∗ cos2 ϕ. (3)

The energy eigenvalues are

εα = h̄2k2
z

2m∗ + ε̃l(kz), (4)

with α = {kz, l}, kz = 2πn

Lz
and n = 0,±1,±2, . . .. The subscript ‘l’ labels the eigenstates

for a chosen value of kz . We have solved equation (2) numerically for the ‘Landau levels’
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Figure 1. Calculated energy eigenvalues ε̃ (scaled by h̄2/2m∗ R2) of the Schrödinger equation (2)
as a function of the wavevector kz/kF0. Here, kF0 is the Fermi wavenumber in the ground (l = 0)
subband in the absence of magnetic field. The parameters used in the calculation are m∗ = 0.25 me
where me is the bare electron mass and R = 11.0 Å. The magnetic fields B chosen are (a) 1 T, (b)
5 T, (c) 10 T and (d) 50 T.

of a tubule and our results are plotted in figure 1 for various magnetic field strengths. The
energy eigenvalues ε̃l(kz) in equation (4) depend on kz due to the coupling between the angular
momentum around the axis of the tubule with the linear momentum parallel to its axis [21].
This coupling is strongest for the lower energy levels (low angular momentum).

The energy eigenvalues are not equally spaced in general but the separation between
adjacent levels is approximately h̄ωc for the higher energy levels in a high magnetic field,
where ωc is the cyclotron frequency. To better understand the effects due to a perpendicular
magnetic field on the electronic states, the energy eigenvalues were calculated numerically, and
our results are presented in figures 1(a)–(d). Here, we plot the quantized energy levels ε̃l(kz)

as a function of kz for several magnetic fields. In figure 1(a), all the energy eigenvalues are
almost independent of kz due to a weak coupling between the linear motion parallel to and the
angular momentum around the axis of the tubule at low magnetic fields. As the magnetic field
is increased in figures 1(b) through (d), Landau levels appear for the lower energy eigenvalues.
In fact, the separation between adjacent levels is approximately h̄ωc for the higher energy levels
in a high magnetic field such as figure 1(d), where ωc = eB/m∗ is the cyclotron frequency.
Also, these energy levels exhibit a stronger dependence on wavenumber for larger |kz|. The
Landau level separation in high magnetic fields for kz ≈ 0 can be deduced from equation (3)
by neglecting the first term of Veff(ϕ) and then using a harmonic approximation at small angle
for cos2 ϕ.

It may be shown in the RPA that the magnetoplasmon excitations can be obtained from
the following determinantal form of the dispersion equation:

Det

[
δL L ′ +

e2

πεs
IL (qz R)KL (qz R)χL L ′(qz, ω)

]
= 0, (5)

where εs = 4πε0εb and IL(x) and KL(x) are modified Bessel functions of the first and second
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kind, respectively. Also,

χL L ′(qz, ω) =
∞∑

l,l′=−∞
M∗

l,l′ (L)Ml,l′ (L
′)�ll′ (qz, ω) (6)

is the susceptibility for a tubule of radius R, L = 0,±1,±2, . . ., and the polarization function
is

�ll′ (qz, ω) = 2
∫ ∞

−∞
dkz

f0(εkz l)− f0(εkz−qz ,l′)

h̄ω + εkz−qz ,l′ − εkz l
, (7)

with f0(ε) the Fermi function, and we have introduced the form factor

Ml,l′ (L) ≡
∫ 2π

0
dϕ �∗

l (ϕ)�l′(ϕ)eiLϕ. (8)

The kz-integral in equation (7) cannot be carried out analytically even at T = 0 K using the
energy eigenvalues in equation (4) because of the dependence of ε̃l(kz) on the wavevector when
there is a finite perpendicular magnetic field present4. However, in the absence of an external
magnetic field, �l(ϕ) = 1√

2π
eilϕ where l = 0,±1,±2, . . . and Ml,l′ (L) = δl′,l−L , which

makes the matrix in equation (6) diagonal in (L, L ′), i.e., angular momenta are decoupled so
that the plasmon excitations may be labelled by the angular momentum transfer (in units of
h̄) L = l − l ′. As a matter of fact, equation (5) agrees with the dispersion formula in Lin’s
paper [13] in zero external magnetic field, i.e., ε(qz, L, ω) = 0 where ε(qz, L, ω) denotes the
diagonal elements in equation (5).

We now present and discuss our numerical results for the dispersion relation of the
magnetoplasmons. To closely simulate the graphene tubule, we took εb = 2.4, m∗ = 0.25 me

where me is the bare electron mass, R = 11.0 Å and EF = 0.6 eV. The effective Bohr
radius is aB ≡ h̄2εs/m∗e2 = 5.08 Å. All calculations were carried out at zero temperature.
We included the transitions L = 0 only in these calculations so that we have a scalar for
equation (5). For these chosen values of the parameters, there are only five subbands occupied
by electrons corresponding to l = 0,±1,±2 in the absence of an external magnetic field. There
are three quasi-acoustic plasmon branches associated with intra-subband electron excitations
with angular momentum transfer L = 0. We have solved equation (5) for various values of
external magnetic field and present our results in figure 2. We used these values for the radius
of the tubule, the background dielectric constant and electron effective mass to compare with
the zero-field case which was presented by Lin and Shung [14]. It was shown that there are
three acoustic plasmon modes in the absence of magnetic field and they lie in the pockets of
the particle-hole modes (see figure 2 of [13].) Also, we note that the carbon nanotube we are
modelling is semiconducting so that the energy dispersion is quadratic at the top of the valence
band and at the bottom of the conduction band [22]. This is in contrast to metallic tubules for
which the corresponding energy band is linear in wavevector.

For the magnetic field chosen in figure 2(a), we have h̄ωc/EF ≈ 0.135. The splitting of
the highest plasmon branch in figure 2(a) is higher than the cyclotron frequency and is very
interesting. As the magnetic field is increased, Landau levels are formed, and some of these
Landau levels lie close to the Fermi level. The value of the wavevector where the Landau levels
cross the Fermi level decreases with increasing magnetic field. The splitting of the highest
plasmon branch is due to inter-Landau level transitions near the Fermi level,and the wavevector

4 We note that in high magnetic fields, some of the energy bands below EF may have negative energy dispersion as
shown in figure 1(d). In calculating the polarization function in equation (7) at T = 0 K, there is no cut-off wavevector
for these bands. However, because the energy enters the polarization function in the denominator, there is convergence
of the numerical result when the integration range is sufficiently large.
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Figure 2. The intra-subband magnetoplasmons (L = 0), shown as solid curves, in the presence of
an applied magnetic field. For the magnetic field chosen, we have h̄ωc/EF ≈ 0.135 in (a), 0.145
in (b), and 0.15 in (c) where ωc is the cyclotron frequency. The plasmon excitation energy, in units
of the Fermi energy ωF, is plotted as a function of qz , in units of the Fermi wavenumber kF0 in the
ground (l = 0) subband. The results were obtained by solving equation (5). The parameters used
in the calculation are εb = 2.4, m∗ = 0.25 me where me is the bare electron mass and R = 11 Å,
EF = 0.6 eV. Shaded regions correspond to the particle-hole mode continuum.

at which this splitting occurs is consequently reduced as the magnetic field is increased.
Figure 2(a) shows that the highest quasi-acoustic plasmon branch starts to split at qz ≈ 0.09kF0,
where kF0 is the Fermi wavevector for the subband with angular momentum quantum number
l = 0. For qz � 0.09kF0, the splitting also induces the formation of an additional particle-hole
mode region due to the single-particle transitions between Landau levels. This particle-hole
mode region is located between the two split plasmon modes. Furthermore, as the magnetic
field is increased, the wavevector at which the splitting of the highest mode occurs decreases. In
addition, the frequency of the lower branch of these two split modes tends to zero as B increases.
We illustrate this in figure 2(b), which shows that the splitting occurs close to qz = 0 as the
magnetic field is increased so that h̄ωc/EF ≈ 0.145. The highest magnetoplasmon mode and
the additional particle-hole mode region display similar behaviour near h̄ω/EF ≡ ωE = 0.33
at a wavevector near qz = 0. However, the magnetoplasmon mode below the additional
particle-hole mode region falls to ωE ≈ 0 at qz = 0. The magnetoplasmon and particle-hole
modes which lie below this region of excitations all have zero frequency in the long wavelength
limit.

Figure 2(c) shows that as the magnetic field is increased so that h̄ωc/EF ≈ 0.15,
the excitation spectrum displays an even more complicated pattern. The magnetoplasmon
spectrum has branches which split off from the particle-hole mode region at finite wavevector.
These branches are due to inter-subband transitions between Landau levels. The results in
figure 1 show that as the magnetic field is increased, Landau levels may cross the Fermi level.
The number of these branches depends on the magnetic field because how many subbands lie
below EF is a function of magnetic field. We have observed similar features for larger cylinder
radii (data not shown) at lower magnetic fields, because the cylinder radius determines the
subband occupation for a chosen Fermi level, and this number increases with the radius R.
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Figure 2(c) also shows that in high magnetic field, some of the plasmon excitations have
negative group velocity for a range of values of the wavevector along the axis of the tubule.
The Coulomb interaction separates a collective excitation above and another below the particle-
hole region due to intra- and inter-subband transitions. The negative dispersion arises from
anticrossing of these two branches of magnetoplasmons. The results we derived demonstrate
that the coupling between the fluctuations along the axis of the tubule and the orbital motion
around the axis results in a shift in the dispersion curve from the particle-hole spectrum which
strongly depends on magnetic field. Also, the oscillator strengths of the magnetoplasmons are
functions of the magnetic field but the highest branch is likely to have largest weight [13].

The dispersion equation we derived was based on the RPA, and the numerical results we
presented were for intra-subband transitions (L = 0) only. If correlation effects are included
beyond the RPA, the qualitative nature of the obtained results should not change because
the density we chose is low. Also, our conclusions should not be affected for inter-subband
transitions corresponding to L �= 0.
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